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ABSTRACT: In this work, electrically and thermally actuated triple
shape memory polymers (SMPs) of chemically cross-linked poly-
cyclooctene (PCO)−multiwalled carbon nanotube (MWCNT)/poly-
ethylene (PE) nanocomposites with co-continuous structure and selective
distribution of fillers in PCO phase are prepared. We systematically
studied not only the microstructure including morphology and fillers’
selective distribution in one phase of the PCO/PE blends, but also the
macroscopic properties including thermal, mechanical, and electrical
properties. The co-continuous window of the immiscible PCO/PE blends
is found to be the volume fraction of PCO (vPCO) of ca. 40−70 vol %.
The selective distribution of fillers in one phase of co-continuous blends
is obtained by a masterbatch technique. The prepared triple SMP
materials show pronounced triple shape memory effects (SMEs) on the dynamic mechanical thermal analysis (DMTA) and the
visual observation by both thermal and electric actuations. Such polyolefin samples with well-defined microstructure, electrical
actuation, and triple SMEs might have potential applications as, for example, multiple autochoke elements for engines, self-
adjusting orthodontic wires, and ophthalmic devices.

KEYWORDS: electrical actuation, triple shape memory effects, polyolefins, nanocomposites, co-continuous structure,
selective distribution

■ INTRODUCTION

Shape memory polymers (SMPs) can remember their
permanent macroscopic shape, be frozen to a temporary
shape under some specific conditions, and then recover to their
original shape under external stimuli.1−3 Compared with the
widely used shape-memory alloys and ceramics (SMAs and
SMCs, respectively), SMPs have some great advantages such as
large strain, low density, easy processing, broad operation
temperature, tunable elastic modulus and switch temperature
(Tsw), and potential biocompatibility and biodegradability.4−19

However, SMPs also have some disadvantages such as
relatively low elastic modulus and lack of functions.20 To solve
these problems, introducing functional inorganic or metallic
fillers into the polymer matrix to prepare SMP composites has
become a popular strategy.21−23 In this way, both mechanical
and thermal properties of the materials could be significantly
improved.24−27 Moreover, instead of direct heating, some new
actuations such as electrical, magnetic, optical, and chemical
stimuli could be achieved.28−37 Among them, electrical
stimulation by adding conductive fillers such as carbon

materials and metals has attracted the most attention because
of potential industrial applications.38−42 For example, tempo-
rally and spatially controlled shape memory effect (SME) was
obtained for electrically conductive polymer nanocomposites
with carbon nanotube (CNT) as fillers.43

The double SMPs generally have a permanent shape and
only a single temporary shape. In contrast, triple and multiple
SMPs could provide more complex actuation because they have
two or more temporary shapes besides their permanent
shape.44−48 Generally, double SMPs need only a reversible
phase, while triple and multiple SMPs need two or more
reversible phases, respectively. An interesting strategy to get
triple and even multiple SMEs was to use the broad glass
transition of polymers.6,49,50 Besides, triple SMEs were also
realized in a system comprised of a permanent covalent cross-
linking and a supramolecular hydrogen bonding cross-linking.51
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In our previous work, triple SMPs were prepared by
chemically cross-linking immiscible blends of two kinds of
polyolefins, polyethylene (PE)/polypropylene (PP) with well-
defined co-continuous structure.52 The co-continuous structure
was built up in the samples to get some synergetic
enhancement of the mechanical properties. Polyolefins PE
and PP were used because of their mass production and
substantial cost advantage as general plastics. The new strategy
proved to be useful in the design of novel triple SMPs. This
work provides a further development of the novel strategy.
While PE with the melting temperature (Tm) of ca. 110 °C was
kept as a component of the blends, another component,
polycyclooctene (PCO) with low Tm of ca. 55 °C, was used to
replace PP, which has a high Tm of 165 °C.53−56 Such PCO/PE
blends could be used to prepare triple SMPs with lower Tsw
values. Electrically conductive multiwalled carbon nanotubes
(MWCNTs) were selectively distributed in the PCO phase by
using a masterbatch technique for the electrical actuation.57−60

Such efforts of combining electrical actuation and triple SMPs
with well-defined microstructure should be helpful to the
academic understanding and industrial applications of new
SMP materials.

■ RESULTS AND DISCUSSION
Co-continuous Structure Built up in PCO/PE Blends

and Selective Distribution of MWCNT Fillers in PCO
Phase of the Blends. The microstructure of two-component
blends depends on the volume fraction of each component and
the compatibility between them. Figure 1 shows the scanning

electronic microscopy (SEM) images of the cryo-fractured
surface of the PCO/PE blends with various volume fractions of
PCO component (vPCO). The same strategy as in our previous
work is used to extract one component of the blends by using
two components’ different solubility at the same temperature.52

That is, although xylene is an excellent solvent for both PCO
and PE at a high enough temperature (e.g., 90.0 °C, and a long
time of dissolution is needed), PCO is more soluble than PE at
a lower temperature (e.g., 60.0 °C) because of the much lower
Tm of PCO (ca. 55 °C) than that of PE (ca. 110 °C).
Therefore, PCO could be selectively extracted after a short time
of 15 min at 60.0 °C, while most of the PE remains undissolved
in this condition. From Figure 1, it can also be seen that for the
blends with vPCO of 10 vol %, the PCO component is the

dispersed phase with a diameter of less than 1 μm, while the PE
component is the continuous matrix, which is a so-called sea−
island structure. For the blends with vPCO of 30 vol %, the PE
component is still the continuous matrix. Some PCO might
already form some kind of continuous phase in the system
based on the solvent extraction measurements, but most of it is
still a dispersed phase with a diameter of 1−3 μm in the PE
matrix. For the blends with vPCO of 50 vol %, both PCO and PE
components form the continuous matrix and a well-defined co-
continuous structure with a domain diameter of ca. 3−7 μm is
built up in the system. For the blends with vPCO of 70 vol %,
PCO is the continuous matrix with a domain diameter of ca. 5−
10 μm, while PE also forms a continuous phase with a domain
diameter of ca. 1−3 μm. Therefore, a co-continuous structure is
also formed in the system. For the blends with vPCO of 90 vol %,
PCO component is the continuous matrix, while PE
component forms the dispersed phase with a diameter of less
than 1 μm (SEM micrographs are not given). On the basis of
these results, it is clear that the co-continuous window of PCO/
PE blends is the vPCO of ca. 40−70 vol %, which is in contrast to
the co-continuous window of the volume fraction of ca. 30−70
vol % for the PE/PP blends.52 It is reasonable to assume that
the co-continuous structure will be kept after chemical cross-
linking of the blends to prepare SMPs. Cross-linking both
phases of the co-continuous structure could provide double
networks in the system for the production of triple SMPs with
high fixity ratio and recovery ratio.52

Figure 2 presents the SEM images of the cryo-fractured
surface of liner and cross-linked PCO-MWCNT 8 vol % and

PCO-MWCNT 15 vol %/PE 70/30 vol % nanocomposites.
According to Figure 2a, MWCNT fillers are homogeneously
dispersed in the PCO matrix. Electrically conductive networks
are well formed in the system. As shown in Figure 2b,
MWCNT fillers are selectively distributed in the PCO phase of
the PCO/PE blends. Therefore, two distinct regions can be
seen: a PCO phase containing MWCNT fillers and a PE phase
almost free of fillers. Both PCO and PE components form the
continuous matrix of the system with a channel width of ca. 1−
5 μm. Figure 2c,d shows that the chemical cross-linking has
some significant influence on the morphology of the samples.
Compared with linear blends shown in Figure 2a,b, the
boundary between different phases of cross-linked blends

Figure 1. SEM images of the cryo-fractured surface of PCO/PE blends
with various vPCO: (a) 10 vol %, (b) 30 vol %, (c) 50 vol %, and (d) 70
vol %. PCO has been dissolved with xylene.

Figure 2. SEM images of the cryo-fractured surface of (a) linear PCO-
MWCNT 8 vol %, (b) linear PCO-MWCNT 15 vol %/PE 70/30 vol
%, (c) cross-linked PCO-MWCNT 8 vol %, and (d) cross-linked
PCO-MWCNT 15 vol %/PE 70/30 vol % nanocompsoites. PCO-
MWCNT and PE phases are marked in panel b.
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becomes less visible. Besides, some kind of agglomeration of
fillers might happen during the chemical cross-linking because
the initiator, 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane
(DHBP) could also react with the fillers’ surface and change
its characteristics. Actually, the electrically conductive networks
in the system are also affected by the chemical reaction, as will
be shown below for the electrical conductivity (σe).
Thermal Properties and Crystal Structure of PCO/PE

Blends. Both thermal analysis and X-ray diffraction are used to
probe the crystallization and melting behavior of the samples.
Figure 3 shows the differential scanning calorimetry (DSC)
heat flow (HF) thermographs during heating and wide-angle X-
ray diffraction (WAXD) patterns of the PCO/PE blends with
various vPCO. It can be seen from Figure 3a that for the pure PE,
there are both a major melting peak at ca. 107.0 °C and a
shoulder at ca. 92.5 °C. The multiple melting peaks are normal
for the pure PE probably due to the complex thermal history,
which produces crystals with different perfections. With the

addition of 10 vol % PCO, the shoulder disappears, while the
major melting peak stays at almost the same temperature with a
slightly reduced peak area. For this blend, there is also a melting
peak of PCO appearing at ca. 55.5 °C. With the further increase
of vPCO, the melting peak of PE shifts to slightly lower
temperatures and the peak area decreases (also shown in Figure
S1, Supporting Information). At the same time, the melting
peak of PCO shifts to slightly higher temperatures and the peak
area increases (also shown in Figure S1, Supporting
Information). For the pure PCO, the single melting peak
appears at ca. 56.5 °C.
Figure 3b shows the corresponding WAXD patterns of these

PCO/PE blends. It can be seen that for the pure PE, there are
two strong diffraction peaks at 2θ of 21.5° and 23.7°, which are
consistent with the reported values in the literature.61−63 For
the pure PCO, there are two strong diffraction peaks at 2θ of
20.2° and 23.2° and two weak peaks at 21.5° and 25.9°, which
are actually consistent with the reported two strong diffraction

Figure 3. (a) DSC thermographs of HF during heating and (b) WAXD patterns of PCO/PE blends with various vPCO.

Figure 4. (a) DSC thermographs of HF during heating and (b) WAXD patterns of (a1 and b1) PCO and PCO-MWCNT 8 vol % nanocomposites
and (a2 and b2) PCO/PE 70/30 vol % blends and PCO-MWCNT 15 vol %/PE 70/30 vol % nanocomposites cross-linked by various wDHBP.
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peaks at 30.0° and 34.8° and two weak peaks at 31.9° and 37.0°
by using different wavelength of ca. 0.2291 nm rather than ca.
0.15406 nm, which is used in this work.53 For the blends, the
diffraction peak of PCO component can be seen for the vPCO as
low as 10 vol %, and the diffraction peak of PE component can
be seen for the vPCO as high as 90 vol %. The change of vPCO

causes a regular change of the diffraction peak area of the
blends. However, there is no change in the 2θ values of the
diffraction peaks, which means that the addition of one
component does not significantly change the crystal structure
of the other component.
According to these results, it is clear that the miscibility

between PCO and PE is quite low, and the PCO/PE blends
could be taken as a typical immiscible system. This is consistent
with the SEM observation, as shown in Figures 1 and 2, in
which a clear boundary between the two phases can be seen.
Control of Cross-Linking Degree by Changing the

Concentration of DHBP. The cross-linking degree of both
blends and nanocomposites is controlled by changing the
concentration of DHBP. Figure 4 presents the DSC HF
thermographs during heating and the WAXD patterns of PCO
and PCO-MWCNT 8 vol % nanocomposites and PCO/PE
blends and PCO-MWCNT 15 vol %/PE 70/30 vol %
nanocomposites cross-linked by various weight fraction of
initiator, DHBP (wDHBP). It can be seen from Figure 4a that the
Tm values of both PCO and PE in pure samples, blends, and
nanocomposites decrease with increasing wDHBP, which clearly
indicates the hindrance of chemical cross-linking to the
crystallization of both components (also shown in Figure S2,
Supporting Information). This effect is much more significant
for the PCO than for the PE: the addition of 3.0 wt % DHBP
causes a Tm decrease of ca. 44.0 °C for PCO but only ca. 5.0 °C

for PE. Besides, the addition of 8 or 15 vol % MWCNT also
decreases the Tm values of both PCO and PE in all the samples,
which indicates the defect effect of high contents of fillers.
Figure 4b shows the corresponding WAXD patterns, and the
evolution of diffraction peaks is consistent with the DSC
results. By comparing the 2θ values of the diffraction peaks, it
can be clearly seen that the addition of MWCNT has little
effect on the crystal structures of the PCO component for both
pure PCO and PCO/PE blends although it does reduce the
degree of crystallinity. It should be mentioned that the use of
1.0 wt % DHBP for both pure samples and blends produces an
fg
w above 98 wt % which is high enough for the good SME.64

Figure 5 shows the temperature dependence of storage
Young’s modulus (E′) for PCO and PCO/PE 70/30 vol %
blends cross-linked by various wDHBP during heating on
dynamic mechanical thermal analyzer (DMTA). It can be
clearly seen that the E′ below the Tm decreases while that above
the Tm increases with increasing wDHBP. The former is due to
the decreased crystallinity, while the latter is due to the
increased cross-linking degree. More detailed discussion of the
thermo-mechanical properties of such samples will be given
below.

Thermo-Mechanical Properties of Pure Samples,
Blends, and Nanocomposites of PCO, PE, and MWCNT.
Figure 6 shows the temperature dependence of E′ for linear and
cross-linked PCO, PE, PCO/PE 70/30 vol % blends, and PCO-
MWCNT 15 vol %/PE 70/30 vol % nanocomposites (lPCO,
cPCO, lPE, cPE, lPCO/PE, cPCO/PE, lPCO-MWCNT/PE,
and cPCO-MWCNT/PE, respectively) during the heating on
DMTA. It can be seen that linear PCO, PE, PCO/PE blends,
and PCO-MWCNT/PE nanocomposites break up at the ca.
61.0 °C, ca. 110.0 °C, ca. 63.0 °C, and ca. 62.0 °C, respectively,

Figure 5. Temperature dependence of E′ for (a) PCO and (b) PCO/PE 70/30 vol % blends cross-linked by various wDHBP during heating on
DMTA.

Figure 6. Temperature dependence of E′ for (a) linear and (b) cross-linked PCO, PE, PCO/PE 70/30 vol % blends, and PCO-MWCNT 15 vol
%/PE 70/30 vol % nanocomposites during heating on DMTA.
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which correspond to the Tm of PCO, PE, PCO, and PCO,
respectively. The linear blends break up at the Tm of PCO
because the PCO component is the major continuous matrix
and its Tm is lower than that of the PE. For the cross-linked
PCO and PE, there is a single step at ca. 42.0 °C and ca. 109.0
°C, respectively, which roughly correspond to the Tm of PCO
and PE, respectively. However, for the cross-linked PCO/PE
blends, there are double steps at ca. 56.0 °C and ca. 110.0 °C,
respectively. As mentioned in our previous work, the stepwise
decrease of E′ is a typical feature of cross-linked systems.52,65

Therefore, the double E′ steps indicate that both PCO and PE
components in the blends are chemically cross-linked. Such
samples could be used as triple SMPs with two Tsw values of ca.
56.0 and 110.0 °C. Both the comparison between lPCO/PE
blends and lPCO-MWCNT/PE nanocomposites and the
comparison between cPCO/PE blends and cPCO-MWCNT/
PE nanocomposites indicate that the addition of MWCNT
fillers increases the E′ of the samples in the whole temperature
range. Although the degree of crystallinity of both PCO and PE
components is decreased by the addition of MWCNT fillers,
the reinforcement effect of the fillers plays a more dominant
role in the mechanical strength of the samples.
Double Shape Memory Effects of Cross-Linked PCO-

MWCNT Nanocomposites. Figure 7 presents the three-

dimensional (3D) diagram of three continuous shape memory
cycles of cross-linked PCO-MWCNT 8 vol % nanocomposites.
High reproducibility of SME can be seen by comparing the 3
cycles, especially the second and third cycles. The strain fixity
ratio (Rf) (defined in the Supporting Information) for the three
cycles is as high as ca. 98.3, 98.2, and 98.2%, respectively, and
the strain recovery ratio (Rr, defined in the Supporting
Information) for the three cycles are as high as ca. 92.2, 99.4,
and 99.2%, respectively, which means the cross-linked PCO-
MWCNT nanocomposites have perfect double SMEs. It should
be mentioned that the ε increase rather than decrease in the
second step is due to the crystallization-induced elongation and
might be used to get reversible SME.54,65

Triple Shape Memory Effects of Cross-Linked PCO/PE
Blends and PCO-MWCNT/PE Nanocomposites. Figure 8
shows the time dependence of temperature (T), stress (σ), and
strain (ε) during the triple SME cycle of cross-linked PCO/PE
70/30 vol % blends and cross-linked PCO-MWCNT 15 vol
%/PE 70/30 vol % nanocomposites with and without the
isothermal step during heating. As shown in Figure 8a, the
process is divided into 4 steps. In the first step, when σ of 0.6

MPa is loaded at 120.0 °C, the ε is increased quickly to ca.
20.6% for the blends and ca. 17.4% for the nanocomposites.
During the cooling to 65.0 °C at 3.0 K min−1 under the load,
there is a small increase of ε for both samples. Then, the σ is
unloaded, and the ε has some decrease for both samples. In the
second step, σ is increased to 1.8 MPa at 65.0 °C, and the ε is
increased quickly to ca. 56.2% for the blends and ca. 28.5% for
the nanocomposites. During the cooling to −30.0 °C at 3.0 K
min−1 under the load, there is a big increase of ε for the blends
but a small increase of ε for the nanocomposites. Then, the σ is
unloaded, and the ε decreases slightly for both samples. These
two steps shown above are the deformation process, while the
following two steps are the recovery process via heating without
load. In the third step, the ε decreases to ca. 23.0% for the
blends and ca. 15.3% for the nanocomposites after heating to
65.0 °C. In the fourth step, the ε further decreases to ca. 11.7%
for the blends and ca. 8.9% for the nanocomposites after
heating to 120.0 °C. The significant mechanical enhancement
by adding MWCNT to the blends can be clearly seen. The
Rf(x), Rf(y), Rr(y → x), and Rr(x → 0) for this cycle of triple
SMEs are ca. 59.0, 92.7, 85.8, and 100%, respectively, for the
blends. For the nanocomposites, these parameters are ca. 74.1,
93.7, 87.8, and 100%, respectively. These data indicate that
both cross-linked PCO/PE blends and cross-linked PCO-
MWCNT/PE nanocomposites have excellent triple SMEs and
the nanocomposites are even better than the blends. Actually,
these data as well as the high strain for PCO/PE system are
much better than those for the PE/PP systems in our previous
work mainly due to the much higher elasticity of PCO than
PP.52−56 It should be mentioned that the isothermal stay of 10
min at the end of the third step as shown in Figure 8a is used
for the better recovery of the first temporary shape as widely
used in the literature.50,66,67 There is also some literature where
no isothermal step is included.68,69 Actually, such an isothermal
step is not crucial to the triple SMEs of our samples, which can
be clearly seen from the comparison between Figure 8a and b.
For the programming without the isothermal stay, the Rf(x),
Rf(y), Rr(y → x), and Rr(x → 0) for the blends are ca. 52.2,
95.0, 91.0, and 92.7%, respectively, while those for the
nanocomposites are ca. 65.9, 91.7, 96.8, and 86.5%,
respectively. Therefore, the isothermal stay is not the source
of triple SMEs. The visual observation of such excellent triple
SMEs will be shown below.

Visual Observation of Triple Shape Memory Effects in
Cross-Linked PCO-MWCNT/PE Nanocomposites via Both
Thermal and Electrical Actuations. Figure 9 presents the
frequency dependence of electrical conductivity (σe) at room
temperature of lPCO-MWCNT 8 and 15 vol %, and cPCO-
MWCNT 15 vol % cross-linked by 0.5 and 1.0 wt % DHBP. It
can be seen that all samples’ σe remains almost constant for the
frequency of 102−105 Hz, which is a typical feature of electrical
conductors. Besides, the addition of MWCNT fillers causes a
remarkable significant increase of σe while the chemical cross-
linking significantly reduces the σe. An increase of the fillers’
volume fraction from 8 to 15 vol % causes an increase of σe by
ca. 4.3 times because of the formation of better conductive
networks. Use of 0.5 and 1.0 wt % DHBP in the PCO-
MWCNT nanocomposites causes a decrease of σe by ca. 1.7
and 27.1 times, respectively, probably because of the
agglomeration of fillers, formation of cracks, and even breakage
of fillers, as shown in Figure 2c,d.
Visual observation is an easy way to check the triple SMEs.

Figure 10 presents the photographs of cross-linked PCO-

Figure 7. Three-dimensional (3D) diagram of three continuous shape
memory cycles of cross-linked PCO-MWCNT 8 vol % nano-
composites.
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MWCNT 15 vol %/PE 70/30 vol % nanocomposites in the
triple SME cycle via both thermal and electrical heating. The
two temporary shapes are sequentially formed at 120.0 and 60.0
°C. In the following recovery process via heating, the first
temporary shape and the permanent shape are recovered in a
reverse order, at 60.0 and 120.0 °C, respectively. It is clear that
both the first temporary shape and the permanent shape can be
almost completely recovered. Therefore, well-defined triple
SMPs have been prepared in this work, and successful electrical
actuation has been achieved.
As discussed in our previous work, our novel strategy of first

blending two immiscible polymers to form co-continuous
structure in the blends and then chemically cross-linking both
components provides a simple and easy approach to realize
triple SMEs.52 Generally, appropriate separation of Tsw is
crucial to the triple SMEs. In our previous work, the Tm values
of the PE and PP components were ca. 110 and 165 °C,
respectively.52 In this work, PCO with a Tm of ca. 55 °C is used
to replace PP.53−56 It is noteworthy that the magic number

list55, 110, and 165 with a ratio of 1/2/3provides the
same appropriate Tm separation for both triple SMP systems of
ca. 55 °C. In this work, not only has the purposeful control of
co-continuous structure to synergically improve the system’s
mechanical properties been maintained, but also, the more
convenient electrical actuation than thermal stimulus has been
realized. Such efforts should benefit the wide industrial and
medical applications of SMPs.

■ CONCLUSIONS

In this work, electrically and thermally actuated triple SMPs of
chemically cross-linked PCO-MWCNT/PE nanocomposites
with co-continuous structure and selective distribution of fillers
in PCO phase have been prepared. We have systematically
studied not only the microstructure, including morphology and
fillers’ selective distribution in one phase of the PCO/PE
blends, but also the macroscopic properties including thermal,
mechanical, and electrical properties. The co-continuous
window of the immiscible PCO/PE blends was found to be
the vPCO of ca. 40−70 vol %. The selective distribution of fillers
in one phase of co-continuous blends was obtained by a
masterbatch technique and confirmed by SEM observation.
The prepared triple SMP materials showed remarkable triple
SMEs in the DMTA and visual observation by both thermal
and electric actuations. A voltage of only 150 V was needed for
the SME of PCO phase. For the strategy to prepare such
polyolefin samples with well-defined microstructure, electrical
actuation, and triple SMEs, the well-defined co-continuous
structure in polymer blends benefited the synergetic enhance-
ment of mechanical properties. Furthermore, the selective
distribution of fillers in one phase of the blends could
remarkably reduce the overall content of fillers for the same
electric conductivity.

Figure 8. Time dependence of T, σ, and ε during the triple SME cycle of cross-linked PCO/PE 70/30 vol % blends and cross-linked PCO-MWCNT
15 vol %/PE 70/30 vol % nanocomposites (a) with and (b) without isothermal step during the heating. The four steps are also indicated.

Figure 9. Frequency dependence of σe at room temperature of lPCO-
MWCNT 8 and 15 vol %, and cPCO-MWCNT 15 vol % cross-linked
by 0.5 and 1.0 wt % DHBP.
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